对数运算教案 篇1
为了做好这学期的数学教学工作,我计划做好以下几方面的工作:
1、理论学习:
抓好教育理论特别是最新的教育理论的学习,及时了解课改信息和课改动向,转变教学观念,形成新课标教学思想,树立现代化、科学化的教育思想。
2、做好各时期的计划:
为了搞好教学工作,以课程改革的思想为指导,根据学校的工作安排以及数学教学任务和内容,做好学期教学工作的总体计划和安排,并且对各单元的进度情况的进行详细计划。
3、备好每堂课
认真钻研课标和教材,做好备课工作,对教学情况的和各单元知识点做到心中有数,备好学生的学习和对知识的掌握情况的,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以提高自己的教学理论水平和教学实践能力。
4、做好课堂教学
创设教学情境,激发学习兴趣,爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的.重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合.,教学内容语言生动。想尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。
5、批改作业
精批细改每一位学生的每份作业,学生的作业缺陷,做到心中有数。对每位学生的作业订正和掌握情况的都尽力做到及时反馈,再次批改,让学生获得了一个较好的巩固机会。
6、做好课外辅导
全面关心学生,这是老师的神圣职责,在课后能对学生进行针对性的辅导,解答学生在理解教材与具体解题中的困难,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学习障碍,增强学生信心,尽可能“吃得了”。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的潜力。
总之通过做好教学工作的每一环节,尽最大的努力,想出各种有效的办法,以提高教学质量。
对数运算教案 篇2
一、教学内容
本学期,按照教育局教研室的要求,教学任务比较繁重。选修1—1,第三章《导数》,按照教研室的计划,应该安排在春节前结束,鉴于临近期末考试,这一章没学,这样本学期教学内容共有以下几部分:选修1—1《导数》,选修1—2共四章《统计案例》、《推理与证明》、《数系的扩充与复数的引入》、《框图》,复习必修1
二、教学策略
按照20xx年山东省高考数学(文科)考纲的要求,及时调整教学计划,认真抓好学生学习的'落实,努力使学生的学成为有效劳动。精心备课,精心辅导,重点抓住目标生不放松,努力使目标生的数学成绩成为有效,积极沟通交流,提高自己的授课水平,同时,认真研究《数学学科课程标准》,学习新课程,应用新课程。
三、具体措施
本学期,我主要从以下几个方面抓好教学:
1、注重学案导学,编好用好学案。注重研究老师如何讲为注重研究学生如何学。
2、尝试分层次作业,尤其是加餐作业,提高优等生的学习成绩。
3、抓好学生作业的落实,不定期检查学生的集锦本、练习本。
4、组织好单元过关,搞好试卷讲评。
5、积极做好目标学生的思想交流,情感沟通。
四、教学进度
周次、时间、教学内容、课时、备注
三月
1、25~3、导数、导数的运算、6+5=11
2、4~10、导数的应用、小结复习、7+2=9、过关考试
3、11~17、统计案例、小结复习、6+2=8、过关考试
4、18~24、推理与证明、小结复习、4+4+2、过关考试
5、25~31、期中考试复习
四月
6、1~7、期中考试、试卷讲评
7、8~14、数系的扩充与复数的引入、小结复习、框图、6+2+4、过关考试
对数运算教案 篇3
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:
1、选取与内容密切相关的',典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析:
两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。
同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
对数运算教案 篇4
教学内容:
冀教版《数学》三年级下册,第46、47页。
教学目标:
1、结合小区建房问题,经历自主解决问题,从分步计算到三个数连乘计算的过程。
2、认识连乘算式,会计算简单的三个数连乘的运算试题。
3、了解同一问题可以有不同的解决办法,积极主动的参与数学活动,增强学习数学的兴趣。
教学准备:
多媒体课件
教学过程:
教学环节
设计意图
教学预设
一、 问题情景
出示课件情景图,通过谈话引出小区新建楼房问题,让学生了解事情中的信息和要解决的问题。
二、自主探索
1、让学生根据问题情景计算并交流自己的想法。
2、交流计算过程,重点说说每一步求的是什么。
3、预设学生回答问题时可能出现的情况,根据不同情况采取相应的应对方法。
4、认识连乘算式,讲解计算过程
5、出示连乘的计算题,对计算方法加以巩固。
三、 思维拓展
1、出示情景题1,让学生自己读题,用自己的方法解决。
2、出示情景题2,让学生试着用综合算式解决。
四、课堂小结
师生通过简短的谈话引出新建楼房问题,让学生知道今天学习的目的是为了解决生活中的实际问题,从而体会到数学与生活的紧密联系,增强学习数学的兴趣。
明确“一栋楼”的概念,为下面的计算做准备。
交流时要关注学生的计算过程,每一步是在求什么。通过交流,不仅可以使学生自己的方法得到认证,同时还可以看到其他同学的不同想法,让学生体会到同一问题可以有不同的解决方法,增强学习数学的兴趣。
学生在回答问题时可能会出现很多不同的情况。充分考虑这些可能情况,并采取相应的措施,这样可以使教学过程显得自然流畅。
两道连乘的计算题,既是对计算方法的练习,又是为下面自己列连乘算式做准备。
这又是一道联系实际的问题,通过这道题,使学生体会解决问题的多样化以及数学和生活的紧密联系。
这道题既是对所学知识的巩固,又是对知识内容的升华。这样用分步列式的同学也尝试到了列综合算式的好处,让学生体会到学习新知识的用途,体验学习的乐趣,享受成功的喜悦。
师:同学们,我这有几张城市建筑的图片,咱们先来看看。刚才我们看到这么多的高楼,体现出一个城市雄厚的经济实力。这几年,我们石家庄的发展速度也非常快,到处都是高楼耸立。最近,有家开发商又要新建楼房了,他们打算在一个生活小区里新建楼房,用来解决一些居民的住房问题。他们的设计是这样的(出示课件)。
师:图中这是几栋楼呢?
像这样的一排楼房,就是一栋。一共要建8栋这样的楼房,每一栋都有5个单元。
师:那么这个小区建成后可以解决多少户居民的住房问题呢?先自己算算,然后四个人一组互相交流交流。
师:谁来说说你的想法?
学生自由发表不同意见,根据学生的回答板书有代表性的问题。
学生可能出现的情况有:
第一种情况:
在回答问题时,先有学生回答出用分步算式计算,再有学生回答出用综合算式计算。
生1:12×5=60(户)60×8=480(户)
生2:8×5=40(个)12×40=480(户)
生3:12×5×8=480(户)
师:真不简单,一道题就想出了这么多种算法。12×5×8=480(户)这个算式,是把两个乘法算式合成了一个算式,像这样的算式叫连乘。那你们试着把这个分步算式也改写成连乘算式吧。
第二种情况:
在回答问题时,可能第一个学生就用的综合算式计算,首先表示肯定,然后再让其他同学说说自己的计算方法。最后,老师再讲解连乘。
生:12×5×8=480(户)
师:这种方法挺巧妙。还有别的计算方法吗?
生:(其他同学回答)
师:刚才第一名同学的方法是把两个乘法算式合成了一个综合算式,这样的算式叫连乘。
第三种情况:
可能在回答问题时,没有学生列出用综合算式计算,这样就等学生们回答完,老师加以引导,列出综合算式。
生:(找2、3名学生回答)
师:像这样的两个乘法算式,我们可以把它们写成一个综合算式(板书), 这样的算式叫做连乘。
师:连乘算式的计算是按照从左向右的顺序。(板书)
师:我这还有两道连乘的计算题,你们试着做做。
(用投影展示2名同学的计算结果,说计算方法)
师:刚才同学们帮助开发商解决了问题,大家表现的都很棒。我这还有一个题需要大家帮忙解决一下。(出示课件)
师:在练习本上用自己的方法做一做吧。
师:谁来给大家说说你的想法。
如果学生列的是分步的算式,要加以肯定;如果有学生列出了连乘的算式,要予以表扬,但不做硬性的要求 。
师:刚才同学们用数学知识解决了那么多问题,真行!我家邻居小明暑假去旅游了,照了好多好看的照片,你们想不想看看?那咱们一起看看吧!(出示课件)他照了多少张相片呢?大家一起算一算吧!(出示课件)你们能不能尝试列综合算式呢?
生:能!
师:试着做一做吧!谁来说说你的做法 。
生:(找2名同学回答)
师:(根据学生的回答加以讲解)
说得很好!
师:这节课,同学们表现的非常出色,解决了那么多的问题。好,这节课我们就上到这里,下课!
对数运算教案 篇5
尊敬的各位考官:
大家好,我是今天的X号考生,今天我说课的题目是《对数函数及其性质》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
首先,我来谈谈我对教材的理解。
对数函数的概念及性质是人教A版必修1第二章的内容,本节课着重讲授对数函数的概念、对数函数的图象及性质。前面学生已经学习了函数的概念,也对指数函数的概念、图象和性质进行了探究。之前的学习,为本节课的知识以及经验都起到了铺垫作用。从学生已有的知识经验出发,引导学生发现问题、解决问题,为进一步综合运用初等函数解决生产生活中以及科研中的问题起到了重要的怍用。
二、说学情
合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。
高中的学生掌握了一定的基础知识以及解决问题的经验,分析问题、解决问题以及动手能力较好。基于此,本节课注重引导学生动脑思考,更富有启发性。引导学生思考、总结,充分参与教学过程,进一步发展学生发现问题、分析问题、解决问题的能力。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握对数函数的概念,会画对数函数的图象,根据对数函数的图象理解对数函数的性质。
(二)过程与方法
通过对数函数性质的探究过程,体会从特殊到一般的方法以及数形结合的数学思想方法。
(三)情感态度价值观
通过本节的学习,体验数学的严谨性,养成细心观察、认真分析、严谨思考的良好思维习惯。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的`。那么根据授课内容可以确定本节课的教学重点是:对数函数的概念、图象和性质。教学难点是:通过对数函数的图象归纳对数函数的性质。
五、说教法和学法
现代教学理论认为,教学过程中,以学生为主体,教师为主导,教师是学习的组织者、引导者、合作者,教学的一切活动必须以强调学生的主动性、积极性为出发点。结合本节课的内容特点和学生的年龄特征,本节课我将采用讲授法、练习法、小组讨论法等教学方法。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
对数运算教案 篇6
(一)对数函数及其性质第一课时,下面,我将从教材分析、教法分析、学法分析、教辅手段、教学过程、板书设计等六个方面对本课时的教学设计进行说明.
一、教材分析
1、教材的地位和作用
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.
2、教学目标的确定及依据
结合课程标准的要求,参照教材的安排,考虑到学生已有的认知结构、心理特征,我制定了如下的教学目标:
(1)知识与技能:进一步理解对数函数的意义,掌握对数函数的图像与性质,初步利用对数函数的图像与性质来解决简单的问题。
(2)过程与方法:经历探究对数函数的图像与性质的过程,培养学生观察、分析、归纳的思维能力以及数学交流能力;渗透类比、数形结合、分类讨论等数学思想方法。
(3)情感、态度与价值观:在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、大胆交流、虚心学习的良好品质。
3、教学重点与难点
重点:对数函数的意义、图像与性质.
难点:对数函数性质中对于在与两种情况函数值的不同变化.
二、教法分析
本节课是在前面研究了对数及常用对数、指数函数的基础上,研究的第二类具体初等函数,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习的基础,鉴于这种情况,安排教学时,采用“从特殊到一般”、“从具体到抽象”的方法,并在教学过程中渗透类比、数形结合、分类讨论等数学思想方法。
三、学法分析
本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)类比学习:与指数函数类比学习对数函数的图像与性质.
(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质.
四、教辅手段
以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方法进行教学。
五、教学过程
根据新课标我将本节课分为下列五个环节:创设情境,引入新课;探究新知,加深理解;讲解例题,强化应用;归纳小结,巩固双基;布置作业,提高升华。
(一)创设情境,引入新课
本节课我是从在指数函数一节曾经做过的一道习题入手的。这样以旧代新逐层递近,不仅使学生易懂而且还体现了指对函数间的密切关系。我的引题是这样的:引题:一个细胞由一个分裂成两个,两个分裂成四个??依此类推,(1)求这样的一个细胞分裂的次数x与细胞个数y之间的函数关系式。(2)256个细胞是这个细胞经过几次分裂得到的?那么要得到1万,10万?个第一问学生很容易得出是指数函数:y=2x。再看第二问,通过思考学生分析出这是个已知细胞个数求分裂次数的问题即:已知y求x的问题,即:x=log2y,紧接着问学生:这是一个函数吗?将知识迁移到函数的定义,即对于任意一个y是否都有唯一的x与之相对应,为了方便学生理解,可以借助指数函数图像加以解释。得出x=log2y是一个函数,但它又和我们平时所见过的函数形式上不一样,我们习惯上用x来表示自变量,y来表示函数,所以可将它改写成y=log2x,这样的函数称为对数函数。这便引出了本节课的课题。
这样设计不仅学生容易接受而且虽然在过程中没有用反函数的概念,但却体现了求指数函数反函数的过程,这为后面学习反函数的概念做了铺垫。由于有了之前学习指数函数的基础,学生很容易就可归纳总结出:对数函数的一般形式:y=logax(a>0且a≠1),并求出定义域(0,+∞)。由于对数函数是形式定义,所以让学生记住这个形式是由为重要的,可以让学生观察解析式的特点并可归纳总结出三条:
1、对数符号前系数为1;
2、底数是不为0的正常数;
3、真数是一个自变量x的形式。为了加深学生的记忆,我这里安排了一道辨析题:判断下列函数是否为对数函数:
这样学生就对对数函数的概念有了更准确的认知与理解。
(二)探究新知,加强理解
得到了对数函数的'解析式,学生自然而然就会想到该研究它的图像了。我的想法是这样的:一方面描点法画图是学生需要熟练掌握的一类重要的画图方法,而且学生对自己画出的图像和归纳总结的知识记忆会更加深刻,所以我决定将课堂交给学生让他们自主探究,然后同学间互相讨论,并根据图像归纳出对数函数的性质。另一方面,研究对数函数图像主要是研究底数a对图像的影响,以及底数互为倒数的两个函数图像间的关系。所以我将所研究的问题分为以下3组:第一组:和第二组:和第三组:和。并且我将全班学生每6人分为一组,由组长负责分配,每个学习小组要把这3组图都画出来,画完后,组内讨论各组图像间的关系或特点并归纳总结出来。这样做的好处是:
1、可以大大节省画图时间,提高课堂效率;
2、这样相当于全班每一位同学,都对对数函数的这三组图像有了初步的感性认识,3、培养了学生团结协作,归纳总结及交流的能力。讨论完后,让几个组的学生代表将本组所画图像及归纳总结的规律用实物投影一一展示,教师将学生归纳总结出的共性的规律提炼出来,并问学生:这是通过具体的对数函数总结出的规律。那么是否适用于一般的情况呢?这时就需要教师用多媒体演示来辅助教学了。我是用几何画板做了一个底数a变化时图像也随着变化的课件。通过底数a的变化,会出现不同的对数函数图像,学生会发现无论a怎样变化,图像的特点与由特殊函数总结出的规律一样,所以可以由特殊推出一般结论。还可以得出对数函数图像其实分为以下两类:a>1和0
a>1 0
图
像
定义域
(0,+∞)值域
R单调性
在上为增函数
在上为减函数奇偶性
非奇非偶函数
至此,对数函数的图像及性质就由教师引导,学生自主探究归纳总结出来。下面就是应用性质来解题了。
(三)讲解例题,强化应用在这一部分我安排了2道例题。例1:求下列函数的定义域:例2:比较下列各组数中的两个值的大小:例1是对对数型函数定义域的考查。目的是让学生掌握形如:的函数求定义域只需f(x)>0即可。例2是比较两个对数值大小的问题。前两道题是直接利用函数单调性来比较,第3道题是为了让学生注意当底数不确定时,要有分类讨论的意识,第4道题是更上一层,底数真数都不相同时应如何处理,这四道题是层层深入,逐渐加深难度,通过这种变式教学可充分调动学生的解题积极性,调动他们的思维。
(四)归纳小结,巩固双基
归纳小结是巩固新知不可缺少的环节。本节课我让学生自主归纳,目的是培养学生的概括能力、语言表达能力,还能使学生将本节课的知识做简要的回顾。然后教师再将学生的发言做最后的小节。可以总结为:
在知识方面:(1)学习了对数函数的图像及其性质;(2)会应用对数函数的知识求定义域;(3)会利用对数函数单调性比较两个对数的大小。
思想方法方面:体会了类比、由特殊到一般、分类与整合、分类讨论的思想方法。
(五)布置作业,提高升华
最后一个环节是布置作业,这是一节课提高升华的过程,也是检验学生是否掌握了本节课的知识和思想方法的关键。本节课我安排了两个作业。必做题和思考题,其中思考题是让学生思考既然本节课我们一直是通过指数函数来研究对数函数的,那么他们之间有怎样的关系呢?
通过以上各个环节,不仅学生掌握了对数函数的定义与性质,还调动了学生自主探究与人合作的学习积极性,很好地完成了教学任务。
对数运算教案 篇7
我今天说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位老师批评指正。
一、说教材
1、教材的地位、作用及编写意图
《对数函数》出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
2、教学目标的确定及依据。
依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:
(1) 知识目标:理解对数函数的概念、掌握对数函数的图象和性质。
(2) 能力目标:培养学生自主学习、综合归纳、数形结合的能力。
(3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。
(4) 情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。
3、教学重点、难点及关键
重点:对数函数的概念、图象和性质;
难点:利用指数函数的图象和性质得到对数函数的图象和性质;
关键:抓住对数函数是指数函数的反函数这一要领。
二、说教法
大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。
三、说学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
这样可发挥学生的主观能动性,有利于提高学生的各种能力。
四、说教学程序
1、复习导入
(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
2、认定目标(出示教学目标)
3、导学达标
按"教师为主导,学生为主体,训练为主线"的原则,安排师生互动活动。
(1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1、从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的'关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。
(2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。
教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。
方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x=··· , , ,1,2,4,8···,请计算对应的y值,然后在坐标系内描点、画出它们的图象。
方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax、的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再出示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。
(3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0 设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。 由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件) 设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。 4、巩固达标(见课件) 这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现"数形结合"和"分类讨论"的思想。 5、反馈练习(见课件) 习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。 6、归纳总结(见课件) 引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。 7、课外作业 : (1)完成P78 2、3题 (2)当底数a>1与0 一、教材分析 本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门。对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用。通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。 二、学情分析 大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。通过对指数函与指数函数的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。 三、设计思路 学生是教学的主体,本节课要给学生提供各种参与机会。为了调动学生学习的积极性,使学生化被动为主动。本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性。在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。 四、教学目标 1、理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能。 2、通过对数函数的'学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.。 3、通过学生分组探究进行活动,掌握对数函数的重要性质。通过做练习,使学生感受到理论与实践的统一。 4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。 五、重点与难点 重点: (1)对数函数的概念; (2)对数函数与指数函数的相互转化。 难点: (1)对数函数概念的理解; (2)对数函数性质的理解。 六、过程设计 (一)复习导入 (1)复习提问:什么是对数函数?如何求反函数?指数函数的图象和性质如何? 学生回答,并用课件展示指数函数的图象和性质。 设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的能力。 (2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么? 设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。 (二)讲授新课 (1)对数函数的概念 引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。 设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。 (2)对数函数的图象 提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢 让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢? 教学内容: 教材第49页中的例3及相关内容。 教学目标: 1.让学生经历含有小括号的混合运算的运算顺序的探索过程,明白“算式里有括号的,要先算括号里面的”的道理。 2.理解并掌握含有括号的混合运算的运算顺序,并能正确运用运算顺序进行计算。 3.在解决问题的过程中,让学生充分体会“小括号”在混合运算中的作用。 4.培养学生独立思考、独立解决问题和积极参与学习活动的能力。 目标解析: 在算式的比较中唤起学生已有的知识经验,让学生经历含有括号的混合运算的运算顺序的探索过程,并在计算、比较中体会“小括号”在混合运算中的作用。 教学重点: 掌握含有括号的混合运算的运算顺序。 教学难点: 体会小括号的作用,会列综合算式来解决问题。 教学准备: 课件等。 教学过程: 一 、复习旧知,导入新课 (一)计算(课件出示出示下面各题) 75-36+24 25-20÷5 6×8-5 1.指生说说每题先算什么,再算什么。 2.学生独立计算,并指生板演,然后全班交流,明确每题的运算顺序。 (二)说出各题的运算顺序并计算(课件出示下面各题) (1)10-5+3= (2)7+(7-6)= 10-(5+3)= 7+7-6= 1.学生独立计算,把先算的一步画上横线。 2.比较算式,全班交流。 (1)每组中上、下两题有什么相同点和不同点? (2)为什么数字相同,运算符号相同,可运算顺序不一样呢? 3.引导学生归纳,初步明白运算顺序:一个算式里有括号的,要先算括号里面的。 (三)导入新课,并板书课题 【设计意图:“温故而知新”,让学生独立计算、集体交流,进一步梳理同级运算、两级运算的运算顺序,并唤起学生已有的知识经验,回顾含有小括号的混合运算的运算顺序,为下面自主探究做好铺垫。】 二、自主探究,学习新知 (一)尝试练习,引出规定 1.脱式计算。(课件出示例3) 7×(7-5) (77-42)÷7 2.学生独立完成,同时指生板演,教师巡视进行个别指导。 3.这两道题有什么相同之处?(都含有小括号) 4.引导学生归纳:算式里有括号的,要先算括号里面的。 (二)变式练习,形成对比 1.脱式计算。(课件出示下面题目) 7×7-5 77-42÷7 2.指生说说各题的运算顺序,然后独立完成,同时指生板演,教师巡视进行个别指导。 3.比较算式。 7×(7-5) (77-42)÷7 7×7-5 77-42÷7 (1)上、下两个算式有什么不同? (2)在进行脱式计算时要注意什么? (3)小括号在这里起到什么作用?(改变运算顺序) 【设计意图:在唤起已有知识经验的基础上,让学生迁移类推,自主学习,亲身体会规定运算顺序的合理性、必要性,理解并掌握含有小括号的混合运算的运算顺序。又在算式的比较中充分体会“小括号”在混合运算中的作用,提高学生的思维能力和计算能力。】 三、巩固深化,综合应用 (一)计算(课件出示教材第49页“做一做”第1题) 76-(12+25) (12-5)×3 48÷(8-2) 34-(28-13) 6×(7+2) (88-56)÷8 1.这6道题有什么相同点? 2.有括号的算式,按怎样的运算顺序进行计算? 3.学生独立完成,指生板演,教师巡视指导,最后全班交流。 (二)说出各题的运算顺序并计算(课件出示教材第49页“做一做”第2题) 4+5×7 (72-18)÷9 24÷4+2 (4+5)×7 72-18÷9 24÷(4+2) 1.每组中上、下两题有什么相同点和不同点? 2.学生独立完成,体会“小括号”在混合运算中的作用。 (三)先填空,再列综合算式(课件出示教材第49页“做一做”第3题) 1.学生独立完成,指生板书综合算式,教师巡视指导。 2.全班交流:什么时候需要加“小括号”? (四)看图列式计算(课件出示教材第52页第13题) 小明有35元钱,买一个魔方用了3元,剩下多少钱?如果用剩下的钱买8元一个的笔袋,可以买几个? 1.学生读题,理解题意。 2.学生独立完成,指生板演,教师巡视指导。 3.全班交流,重点说明:要求可以买几个笔袋,必须要求出剩下的钱。 4.拓展提高:有能力的学生也可引导他们直接求第二问。 【设计意图:在掌握含有小括号的混合运算的运算顺序的基础上,设计有层次性的练习,在练习中不仅凸显“小括号”的作用,而且训练学生列综合算式的能力。这样即巩固了新知,也为下一节课的学习打下坚实的基础。】 四、课堂小结,梳理知识 今天这节课我们学习了什么知识?与前面学习的混合运算有什么不同?计算时要注意什么? 一、内容与解析 (一)内容:对数函数的性质 (二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。 二、目标及解析 (一)教学目标: 1.掌握对数函数的性质并能简单应用 (二)解析: (1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。 三、问题诊断分析 在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板. 四、教学支持条件分析 在本节课()的教学中,准备使用(),因为使用(),有利于(). 五、教学过程 问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。 设计意图: 师生活动(小问题): 1.这些对数函数的解析式有什么共同特征? 2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。 3.通过这些函数图象请从函数值的分布角度总结相关性质 4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律? 问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。 问题3.根据问题1、2填写下表 图象特征函数性质 a>10<a<1a>10<a<1 向y轴正负方向无限延伸函数的值域为R+ 图象关于原点和y轴不对称非奇非偶函数 函数图象都在y轴右侧函数的定义域为R 函数图象都过定点(1,0) 自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数 在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1 在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1 [设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成 例1.比较下列各组数中两个值的大小: (1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7 (3)log a5.1 , log a5.9 ( a>0 , 且a≠1 ) 变式训练:1. 比较下列各题中两个值的大小: ⑴ log106 log108 ⑵ log0.56 log0.54 ⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4 2.已知下列不等式,比较正数m,n 的大小: (1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n (3) log a m < loga n (0 log a n (a>1) 例2.(1)若 且 ,求 的取值范围 (2)已知 ,求 的取值范围; 六、目标检测 1.比较 , , 的大小: 2.求下列各式中的x的值 (1) 演绎推理导学案 2.1.2 演绎推理 学习目标 1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性; 2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理. 学习过程 一、前准备 复习1:归纳推理是由 到 的推理. 类比推理是由 到 的推理. 复习2:合情推理的结论 . 二、新导学 ※ 学习探究 探究任务一:演绎推理的概念 问题:观察下列例子有什么特点? (1)所有的金属都能够导电,铜是金属,所以 ; (2)一切奇数都不能被2整除,20xx是奇数,所以 ; (3)三角函数都是周期函数, 是三角函数,所以 ; (4)两条直线平行,同旁内角互补.如果A与B是两条平行直线的同旁内角,那么 . 新知:演绎推理是 的推理.简言之,演绎推理是由 到 的推理. 探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点? 所有的金属都导电 铜是金属 铜能导电 已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断 大前提 小前提 结论 新知:“三段论”是演绎推理的一般模式: 大前提—— ; 小前提—— ; 结论—— . 新知:用集合知识说明“三段论”: 大前提: 小前提: 结 论: 试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式. ※ 典型例题 例1 命题:等腰三角形的两底角相等 已知: 求证: 证明: 把上面推理写成三段论形式: 变式:已知空间四边形ABCD中,点E,F分别是AB,AD的中点, 求证:EF 平面BCD 例2求证:当a>1时,有 动手试试:1证明函数 的值恒为正数。 2 下面的推理形式正确吗?推理的结论正确吗?为什么? 所有边长相等的凸多边形是正多边形,(大前提) 菱形是所有边长都相等的凸多边形, (小前提) 菱形是正多边形. (结 论) 小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确. 三、总结提升 ※ 学习小结 1. 合情推理 ;结论不一定正确. 2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确. 3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略. ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的`,这是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4.归纳推理是由 到 的推理; 类比推理是由 到 的推理; 演绎推理是由 到 的推理. 后作业 1. 运用完全归纳推理证明:函数 的值恒为正数。 直观图 总 课 题空间几何体总课时第4课时 分 课 题直观图画法分课时第4课时 目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图. 重点难点用斜二侧画法画图. 引入新课 1.平行投影、中心投影、斜投影、正投影的有关概念. 2.空间图形的直观图的画法——斜二侧画法: 规则:(1)____________________________________________________________. (2)____________________________________________________________. (3)____________________________________________________________. (4)____________________________________________________________. 例题剖析 例1 画水平放置的正三角形的直观图. 例2 画棱长为 的正方体的直观图. 巩固练习 1.在下列图形中,采用中心投影(透视)画法的是__________. 2.用斜二测画法画出下列水平放置的图形的直观图. 3.根据下面的三视图,画出相应的空间图形的直观图. 课堂小结 通过例题弄清空间图形的直观图的斜二侧画法方法及步骤.对数运算教案 篇8
对数运算教案 篇9
对数运算教案 篇10
更多精彩的对数运算教案,欢迎继续浏览:对数运算教案